Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Alonso-Valdesueiro, Javier, et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223334

CSRR chemical sensing in uncontrolled environments by PLS regression

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Complementary Split Ring Resonators (CSRRs) have been widely researched as planar sensors, but their use in routine chemical analysis is limited due to dependence on high-end equipment, controlled conditions, and susceptibility to environmental and handling variations. This work introduces a novel approach combining a CSRR sensor with machine learning (ML) to enable reliable quantification of compounds. A low-cost benchtop CSRR system was tested for ethanol concentration prediction in water (10–96%), using 450 randomized measurements. PCA was applied for data exploration, and a PLS regression model with Leave-One-Group-Out cross-validation achieved a 3.7% RMSEP, six times better than univariate calibration (23.4%). The results show that ML can mitigate measurement uncertainties, making CSRR sensors viable for robust, low-cost concentration analysis under realistic laboratory conditions.

Citació

Citació

ALONSO VALDESUEIRO, Javier, FERNÁNDEZ ROMERO, Luis, GUTIÉRREZ GÁLVEZ, Agustín, MARCO COLÁS, Santiago. CSRR chemical sensing in uncontrolled environments by PLS regression. _IEEE Sensors Journal_. 2025. [consulta: 9 de gener de 2026]. ISSN: 1530-437X. [Disponible a: https://hdl.handle.net/2445/223334]

Exportar metadades

JSON - METS

Compartir registre