CSRR chemical sensing in uncontrolled environments by PLS regression
| dc.contributor.author | Alonso Valdesueiro, Javier | |
| dc.contributor.author | Fernández Romero, Luis | |
| dc.contributor.author | Gutiérrez Gálvez, Agustín | |
| dc.contributor.author | Marco Colás, Santiago | |
| dc.date.accessioned | 2025-09-22T16:34:34Z | |
| dc.date.available | 2025-09-22T16:34:34Z | |
| dc.date.issued | 2025-09-18 | |
| dc.date.updated | 2025-09-22T16:34:34Z | |
| dc.description.abstract | Complementary Split Ring Resonators (CSRRs) have been widely researched as planar sensors, but their use in routine chemical analysis is limited due to dependence on high-end equipment, controlled conditions, and susceptibility to environmental and handling variations. This work introduces a novel approach combining a CSRR sensor with machine learning (ML) to enable reliable quantification of compounds. A low-cost benchtop CSRR system was tested for ethanol concentration prediction in water (10–96%), using 450 randomized measurements. PCA was applied for data exploration, and a PLS regression model with Leave-One-Group-Out cross-validation achieved a 3.7% RMSEP, six times better than univariate calibration (23.4%). The results show that ML can mitigate measurement uncertainties, making CSRR sensors viable for robust, low-cost concentration analysis under realistic laboratory conditions. | |
| dc.format.extent | 10 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 760625 | |
| dc.identifier.issn | 1530-437X | |
| dc.identifier.uri | https://hdl.handle.net/2445/223334 | |
| dc.language.iso | eng | |
| dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1109/JSEN.2025.3608087 | |
| dc.relation.ispartof | IEEE Sensors Journal, 2025 | |
| dc.relation.uri | https://doi.org/10.1109/JSEN.2025.3608087 | |
| dc.rights | cc-by (c) Alonso-Valdesueiro, Javier, et al., 2025 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
| dc.source | Articles publicats en revistes (Enginyeria Electrònica i Biomèdica) | |
| dc.subject.classification | Termometria | |
| dc.subject.classification | Ressonadors | |
| dc.subject.classification | Aprenentatge automàtic | |
| dc.subject.other | Temperature measurements | |
| dc.subject.other | Resonators | |
| dc.subject.other | Machine learning | |
| dc.title | CSRR chemical sensing in uncontrolled environments by PLS regression | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1