Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Turan, N. et al., 2011
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/42521

A systems biology approach identifies Molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Chronic Obstructive Pulmonary Disease (COPD) is an inflammatory process of the lung inducing persistent airflow limitation. Extensive systemic effects, such as skeletal muscle dysfunction, often characterize these patients and severely limit life expectancy. Despite considerable research efforts, the molecular basis of muscle degeneration in COPD is still a matter of intense debate. In this study, we have applied a network biology approach to model the relationship between muscle molecular and physiological response to training and systemic inflammatory mediators. Our model shows that failure to co-ordinately activate expression of several tissue remodelling and bioenergetics pathways is a specific landmark of COPD diseased muscles. Our findings also suggest that this phenomenon may be linked to an abnormal expression of a number of histone modifiers, which we discovered correlate with oxygen utilization. These observations raised the interesting possibility that cell hypoxia may be a key factor driving skeletal muscle degeneration in COPD patients.

Citació

Citació

TURAN, Nil, KALKO, Susana, STINCONE, Anna, CLARKE, Kim, SABAH, Ayesha, HOWLETT, Katherine, CURNOW, S. john, RODRÍGUEZ, Diego a., CASCANTE I SERRATOSA, Marta, O'NEILL, Laura, EGGINTON, Stuart, ROCA TORRENT, Josep, FALCIANI, Francesco. A systems biology approach identifies Molecular networks defining skeletal muscle abnormalities in chronic obstructive pulmonary disease.. _PLoS Computational Biology_. 2011. Vol. 7, núm. 9, pàgs. e1002129-e1002129. [consulta: 30 de gener de 2026]. ISSN: 1553-734X. [Disponible a: https://hdl.handle.net/2445/42521]

Exportar metadades

JSON - METS

Compartir registre