Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217851

Stable cones in the thin one-phase problem

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n \geq 3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open. The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of "large solutions" for the fractional Laplacian, which blow up on the free boundary. On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n \leq 5$ is one-dimensional, independently of the parameter $s \in(0,1)$.

Citació

Citació

FERNÁNDEZ-REAL, Xavier, ROS, Xavier. Stable cones in the thin one-phase problem. _American Journal of Mathematics_. 2024. Vol. 146, núm. 3, pàgs. 631-685. [consulta: 25 de gener de 2026]. ISSN: 0002-9327. [Disponible a: https://hdl.handle.net/2445/217851]

Exportar metadades

JSON - METS

Compartir registre