Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217851
Stable cones in the thin one-phase problem
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem.
The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n \geq 3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open.
The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of "large solutions" for the fractional Laplacian, which blow up on the free boundary.
On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n \leq 5$ is one-dimensional, independently of the parameter $s \in(0,1)$.
Matèries (anglès)
Citació
Citació
FERNÁNDEZ-REAL, Xavier, ROS, Xavier. Stable cones in the thin one-phase problem. _American Journal of Mathematics_. 2024. Vol. 146, núm. 3, pàgs. 631-685. [consulta: 25 de gener de 2026]. ISSN: 0002-9327. [Disponible a: https://hdl.handle.net/2445/217851]