Stable cones in the thin one-phase problem

dc.contributor.authorFernández-Real, Xavier
dc.contributor.authorRos, Xavier
dc.date.accessioned2025-01-23T08:50:30Z
dc.date.available2025-01-23T08:50:30Z
dc.date.issued2024-06-01
dc.date.updated2025-01-23T08:50:30Z
dc.description.abstractThe aim of this work is to study homogeneous stable solutions to the thin (or fractional) one-phase free boundary problem. The problem of classifying stable (or minimal) homogeneous solutions in dimensions $n \geq 3$ is completely open. In this context, axially symmetric solutions are expected to play the same role as Simons' cone in the classical theory of minimal surfaces, but even in this simpler case the problem is open. The goal of this paper is twofold. On the one hand, our first main contribution is to find, for the first time, the stability condition for the thin one-phase problem. Quite surprisingly, this requires the use of "large solutions" for the fractional Laplacian, which blow up on the free boundary. On the other hand, using our new stability condition, we show that any axially symmetric homogeneous stable solution in dimensions $n \leq 5$ is one-dimensional, independently of the parameter $s \in(0,1)$.
dc.format.extent46 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec719153
dc.identifier.issn0002-9327
dc.identifier.urihttps://hdl.handle.net/2445/217851
dc.language.isoeng
dc.publisherJohns Hopkins University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1353/ajm.2024.a928321
dc.relation.ispartofAmerican Journal of Mathematics, 2024, vol. 146, num.3, p. 631-685
dc.relation.urihttps://doi.org/10.1353/ajm.2024.a928321
dc.rights(c) Johns Hopkins University Press, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEquacions en derivades parcials
dc.subject.classificationProblemes de contorn
dc.subject.otherPartial differential equations
dc.subject.otherBoundary value problems
dc.titleStable cones in the thin one-phase problem
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
246339.pdf
Mida:
666.35 KB
Format:
Adobe Portable Document Format