On holomorphic distributions on Fano threefolds

dc.contributor.authorCavalcante, Alana
dc.contributor.authorCorrêa, Mauricio
dc.contributor.authorMarchesi, Simone
dc.date.accessioned2023-02-20T08:40:56Z
dc.date.available2023-02-20T08:40:56Z
dc.date.issued2020-06
dc.date.updated2023-02-20T08:40:56Z
dc.description.abstractThis paper is devoted to the study of holomorphic distributions of dimension and codimension one on smooth weighted projective complete intersection Fano manifolds X which is threedimensional and with Picard number equal to one. We study the relations between algebro-geometric properties of the singular set of singular holomorphic distributions and their associated sheaves. We characterize either distributions whose tangent sheaf or conormal sheaf are arithmetically Cohen Macaulay (aCM) on X. We also prove that a codimension one locally free distribution with trivial canonical bundle on any Fano threefold, with Picard number equal to one, has a tangent sheaf which either splits or it is stable.
dc.format.extent20 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec694386
dc.identifier.issn0022-4049
dc.identifier.urihttps://hdl.handle.net/2445/193820
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.jpaa.2019.106272
dc.relation.ispartofJournal of Pure and Applied Algebra, 2020, vol. 224, num. 6
dc.relation.urihttps://doi.org/10.1016/j.jpaa.2019.106272
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFoliacions (Matemàtica)
dc.subject.classificationTopologia diferencial
dc.subject.classificationHomologia
dc.subject.otherFoliations (Mathematics)
dc.subject.otherDifferential topology
dc.subject.otherHomology
dc.titleOn holomorphic distributions on Fano threefolds
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
694386.pdf
Mida:
300.14 KB
Format:
Adobe Portable Document Format