An arithmetic Bernstein-Kushnirenko inequality

dc.contributor.authorMartínez, César
dc.contributor.authorSombra, Martín
dc.date.accessioned2020-07-14T07:29:26Z
dc.date.available2020-07-14T07:29:26Z
dc.date.issued2018-09-06
dc.date.updated2020-07-14T07:29:26Z
dc.description.abstractWe present an upper bound for the height of the isolated zeros in the torus of a system of Laurent polynomials over an adelic field satisfying the product formula. This upper bound is expressed in terms of the mixed integrals of the local roof functions associated to the chosen height function and to the system of Laurent polynomials. We also show that this bound is close to optimal in some families of examples. This result is an arithmetic analogue of the classical Bern¿tein-Ku¿nirenko theorem. Its proof is based on arithmetic intersection theory on toric varieties.
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec702667
dc.identifier.issn0025-5874
dc.identifier.urihttps://hdl.handle.net/2445/168539
dc.language.isoeng
dc.publisherSpringer Verlag
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1007/s00209-018-2107-0
dc.relation.ispartofMathematische Zeitschrift, 2018, vol. 291, p. 1211-1244
dc.relation.urihttps://doi.org/10.1007/s00209-018-2107-0
dc.rights(c) Springer Verlag, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationGeometria algebraica
dc.subject.classificationVarietats tòriques
dc.subject.classificationFuncions convexes
dc.subject.otherAlgebraic geometry
dc.subject.otherToric varieties
dc.subject.otherConvex functions
dc.titleAn arithmetic Bernstein-Kushnirenko inequality
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
702667.pdf
Mida:
485.8 KB
Format:
Adobe Portable Document Format