Tracing In-Hospital COVID-19 Outcomes: A Multistate Model Exploration (TRACE)

dc.contributor.authorMohammadi, Hamed
dc.contributor.authorReza Marateb, Hamid
dc.contributor.authorMomenzadeh, Mohammadreza
dc.contributor.authorWolkewitz, Martin
dc.contributor.authorRubio Rivas, Manuel
dc.date.accessioned2024-10-21T15:03:33Z
dc.date.available2024-10-21T15:03:33Z
dc.date.issued2024-09-21
dc.date.updated2024-10-17T11:15:12Z
dc.description.abstractThis study aims to develop and apply multistate models to estimate, forecast, and manage hospital length of stay during the COVID-19 epidemic without using any external packages. Data from Bellvitge University Hospital in Barcelona, Spain, were analyzed, involving 2285 hospitalized COVID-19 patients with moderate to severe conditions. The implemented multistate model includes transition probabilities and risk rates calculated from transitions between defined states, such as admission, ICU transfer, discharge, and death. In addition to examining key factors like age and gender, diabetes, lymphocyte count, comorbidity burden, symptom duration, and different COVID-19 waves were analyzed. Based on the model, patients hospitalized stay an average of 11.90 days before discharge, 2.84 days before moving to the ICU, or 34.21 days before death. ICU patients remain for about 24.08 days, with subsequent stays of 124.30 days before discharge and 35.44 days before death. These results highlight hospital stays' varying durations and trajectories, providing critical insights into patient flow and healthcare resource utilization. Additionally, it can predict ICU peak loads for specific subgroups, aiding in preparedness. Future work will integrate the developed code into the hospital's Health Information System (HIS) following ISO 13606 EHR standards and implement recursive methods to enhance the model's efficiency and accuracy.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2075-1729
dc.identifier.pmid39337977
dc.identifier.urihttps://hdl.handle.net/2445/215927
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/life14091195
dc.relation.ispartofLife, 2024, vol. 14, num. 9, p. 1195
dc.relation.urihttps://doi.org/10.3390/life14091195
dc.rightscc by (c) Mohammadi, Hamed et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationPandèmia de COVID-19, 2020-
dc.subject.classificationFactors de risc en les malalties
dc.subject.otherCOVID-19 Pandemic, 2020-
dc.subject.otherRisk factors in diseases
dc.titleTracing In-Hospital COVID-19 Outcomes: A Multistate Model Exploration (TRACE)
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
life-14-01195.pdf
Mida:
5.29 MB
Format:
Adobe Portable Document Format