Carregant...
Tipus de document
Treball de fi de màsterData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/215063
Graph-based entity resolution and completion for academic knowledge graphs
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
[en] This thesis explores graph-based entity resolution and completion within academic knowledge graphs, focusing on the complex relationships between authors and papers and between papers themselves using Graph Neural Networks (GNNs). Raw data sourced from the American Physical Society underwent meticulous data cleaning and entity resolution analysis to prepare it for the proposed network. Author grouping strategies and citation overlap were examined, revealing distinct clusters of researchers and insightful patterns in citation relationships. A GNN model was developed using SAGEConv layers and heterogeneous transformations to capture local graph structures for accurate link prediction. This model was optimized with mini-batch loading and edge-level splits, which contributed to its high accuracy in predicting links between authors and papers, as demonstrated in the evaluation.
The findings underscore the model’s capability to uncover hidden relationships and trends within the academic graph. Future work could enhance the model by incorporating additional features, experimenting with alternative GNN architectures, and including more detailed citation contexts and collaboration networks. Overall, this thesis highlights the transformative potential of GNNs in entity resolution and completion for academic knowledge graphs.
Descripció
Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Dimitri Marinelli i Albert Díaz Guilera
Matèries (anglès)
Citació
Citació
CHESTER, Madison elizabeth. Graph-based entity resolution and completion for academic knowledge graphs. [consulta: 29 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/215063]