Graph-based entity resolution and completion for academic knowledge graphs

dc.contributor.advisorMarinelli, Dimitri
dc.contributor.advisorDíaz Guilera, Albert
dc.contributor.authorChester, Madison Elizabeth
dc.date.accessioned2024-09-09T09:12:23Z
dc.date.available2024-09-09T09:12:23Z
dc.date.issued2024-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2023-2024. Tutor: Dimitri Marinelli i Albert Díaz Guileraca
dc.description.abstract[en] This thesis explores graph-based entity resolution and completion within academic knowledge graphs, focusing on the complex relationships between authors and papers and between papers themselves using Graph Neural Networks (GNNs). Raw data sourced from the American Physical Society underwent meticulous data cleaning and entity resolution analysis to prepare it for the proposed network. Author grouping strategies and citation overlap were examined, revealing distinct clusters of researchers and insightful patterns in citation relationships. A GNN model was developed using SAGEConv layers and heterogeneous transformations to capture local graph structures for accurate link prediction. This model was optimized with mini-batch loading and edge-level splits, which contributed to its high accuracy in predicting links between authors and papers, as demonstrated in the evaluation. The findings underscore the model’s capability to uncover hidden relationships and trends within the academic graph. Future work could enhance the model by incorporating additional features, experimenting with alternative GNN architectures, and including more detailed citation contexts and collaboration networks. Overall, this thesis highlights the transformative potential of GNNs in entity resolution and completion for academic knowledge graphs.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/215063
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Madison Elizabeth Chester, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationTeoria de grafs
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationInvestigadors
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationLiteratura científicaca
dc.subject.otherGraph theory
dc.subject.otherNeural networks (Computer science)
dc.subject.otherResearch workers
dc.subject.otherMaster's thesis
dc.subject.otherScientific literatureen
dc.titleGraph-based entity resolution and completion for academic knowledge graphsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_chester_madison.pdf
Mida:
732.37 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria