Estudio de imágenes de resonancia magnética funcional en reposo para la predicción de variables personales

dc.contributor.advisorIgual Muñoz, Laura
dc.contributor.authorMoral Pérez, Juan Luis
dc.date.accessioned2016-11-17T09:41:53Z
dc.date.available2016-11-17T09:41:53Z
dc.date.issued2016-01-21
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Laura Igual Muñozca
dc.description.abstractThis project is focused on the creation of a classification system that separates a group of subjects according to their gender based on data from magnetic resonance images (MRI) in a resting state. The images from MRI in a resting state are a tool to measure the brain connectivity or functioning that is currently being used for many neuroscience studies. This project, in particular, uses the representation of facts based on the Network in a resting state to characterize the functional connectivity of the subjects for the visualization of the obtained results. As well as evaluating the accuracy of the classification system developed, another objective of the project is to determine which of the cerebral networks are more discriminative in the task of separating men and women. The mothodology utilized combines two types of automatic learning: unsupervised learning, as in the Independent Componentes Analysis and the Principal Components Analysis, and supervised learning, as is the K-NN and SVM classifiers. The results obtained are promising, because it finds a RSN that discriminates both sex and we also note that the Principal Component Analysis does not affect when classifying .ca
dc.format.extent44 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/103767
dc.language.isospaca
dc.rightsmemòria: cc-by-nc-sa (c) Juan Luis Moral Pérez, 2016
dc.rightscodi: GPL (c) Juan Luis Moral Pérez, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)cat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationProgramaricat
dc.subject.classificationTreballs de fi de graucat
dc.subject.classificationImatges per ressonància magnèticaca
dc.subject.otherLearning classifier systemseng
dc.subject.otherMachine learningeng
dc.subject.otherComputer softwareeng
dc.subject.otherBachelor's theseseng
dc.subject.otherMagnetic resonance imagingeng
dc.titleEstudio de imágenes de resonancia magnética funcional en reposo para la predicción de variables personalesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
2.28 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
20.36 KB
Format:
ZIP file
Descripció:
Codi font