L-invariants for cohomological representations of PGL(2) over arbitrary number fields

dc.contributor.authorGehrmann, Lennart
dc.contributor.authorPati, Maria Rosaria
dc.date.accessioned2025-09-12T12:56:47Z
dc.date.available2025-09-12T12:56:47Z
dc.date.issued2024-05-30
dc.date.updated2025-09-12T12:56:47Z
dc.description.abstractLet π be a cuspidal, cohomological automorphic representation of an inner form G of PGL2 over a number field F of arbitrary signature. Further, let p be a prime of F such that G is split at p and the local component πp of π at p is the Steinberg representation. Assuming that the representation is noncritical at p, we construct automorphic L-invariants for the representation π. If the number field F is totally real, we show that these automorphic L-invariants agree with the Fontaine–Mazur L-invariant of the associated p-adic Galois representation. This generalizes a recent result of Spieß respectively Rosso and the first named author from the case of parallel weight 2 to arbitrary cohomological weights.
dc.format.extent27 p.
dc.format.mimetypeapplication/pdf
dc.identifier.issn2050-5094
dc.identifier.urihttps://hdl.handle.net/2445/223126
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1017/fms.2024.51
dc.relation.ispartofForum of Mathematics, Sigma, 2024, vol. 12
dc.relation.urihttps://doi.org/10.1017/fms.2024.51
dc.rightscc-by (c) Gehrmann, Lennart et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationEspais de Hilbert
dc.subject.classificationTeoria de Galois
dc.subject.otherHilbert space
dc.subject.otherGalois theory
dc.titleL-invariants for cohomological representations of PGL(2) over arbitrary number fields
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
899450.pdf
Mida:
500.49 KB
Format:
Adobe Portable Document Format