A ~5000 year multiproxy record of summer climate in NE Greenland

dc.contributor.authorGarcia-Oteyza Cira, Julia
dc.contributor.authorGiralt Romeu, Santiago
dc.contributor.authorPla-Rabès, Sergi
dc.contributor.authorAntoniades, Dermot
dc.contributor.authorOliva Franganillo, Marc
dc.contributor.authorGhanbari, H.
dc.contributor.authorOsiorio-Serrano, R.
dc.contributor.authorPalacios Estremera, David
dc.date.accessioned2025-01-13T18:23:14Z
dc.date.issued2023-10-08
dc.date.updated2025-01-13T18:23:14Z
dc.description.abstractThe High Arctic plays a vital role in Earth's climate system, and its ecosystems are highly sensitive to global climate change. High Arctic lakes are valuable sentinels of climate change, as their sediments integrate long-term natural climatic fluctuations and anthropogenic influences. Here, we present a high-resolution ∼5000 year-reconstruction of NE Greenland climate variability from Aucella Lake (74°N, 20°E) based on physical, chemical, and biological properties of lake sediments. We use CT-scans, hyperspectral imaging, organic matter, XRD, and diatom analyses to show that changing air temperatures were controlled by a mix of regional climatic changes and local landscape feedbacks. The latest Mid-Holocene (∼5.0–3.8 cal. ka BP) was characterized by relatively warmer conditions, while the onset of the Late-Holocene was marked by abrupt temperature decreases that coincided with the beginning of glacial advances elsewhere (∼3.8–3.4 cal. ka BP). From ∼3.4–2.4 cal. ka BP, the sedimentary record indicated progressive warming, with temperature peaking during the Medieval Climate Anomaly, although temperature rises were punctuated by abrupt, short-lived cold periods. From ∼1.1–0.05 cal. ka BP, the influence of landscape factors over the system diminished. Sedimentary indicators suggested a transition towards a colder, more humid climate, coinciding with the beginning of the Little Ice Age, that was characterized by a marked decrease in air temperature that reached minimum values at the end of this period. The last 50 years at Aucella Lake were marked by abrupt temperature rises, consistent with recently observed anthropogenic global warming. Our results illustrate the importance of high-resolution multiproxy studies for accurately characterizing lake linkages to their environment and climate.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec740486
dc.identifier.issn0048-9697
dc.identifier.urihttps://hdl.handle.net/2445/217427
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.scitotenv.2023.167713
dc.relation.ispartofScience of the Total Environment, 2023, vol. 906
dc.relation.urihttps://doi.org/10.1016/j.scitotenv.2023.167713
dc.rightscc-by-nc-nd (c) Garcia-Oteyza Cira, Julia, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Geografia)
dc.subject.classificationPaleolimnologia
dc.subject.classificationLlacs
dc.subject.classificationGrenlàndia
dc.subject.classificationCanvi climàtic
dc.subject.otherPaleolimnology
dc.subject.otherLakes
dc.subject.otherGreenland
dc.subject.otherClimatic change
dc.titleA ~5000 year multiproxy record of summer climate in NE Greenland
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
835472.pdf
Mida:
3.47 MB
Format:
Adobe Portable Document Format