Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc (c) McCarthy, J. et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/206256

Data-driven staging of genetic frontotemporal dementia using multi-modal MRI

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high-dimensional large-scale population datasets to obtain individual scores of disease stage. We used cross-sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting-state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI-obtained disease scores to the estimated years to onset (age-mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre-dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data-driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.© 2021 The Authors. Human Brain Mapping published by Wiley Periodicals LLC.

Citació

Citació

MCCARTHY, J., BORRONI, B., SÁNCHEZ VALLE, Raquel, MORENO, F., LAFORCE, R., GRAFF, C., SYNOFZIK, M., GALIMBERTI, D., ROWE, James b., MASELLIS, M., TARTAGLIA, M. c., FINGER, E., VANDENBERGHE, R., MENDONÇA, Alexandre de, TAGLIAVINI, F., SANTANA, Isabel, BUTLER, C., GERHARD, A., DANEK, A., LEVIN, J., OTTO, Markus, FRISONI, G., GHIDONI, R., SORBI, S., JISKOOT, L. c., SEELAAR, H., VAN SWIETEN, J. c., ROHRER, Jonathan d., ITURRIA MEDINA, Y., GENetic Frontotemporal Dementia Initiative (GENFI). Data-driven staging of genetic frontotemporal dementia using multi-modal MRI. _Human Brain Mapping_. 2022. Vol. 43, núm. 6, pàgs. 1821-1835. [consulta: 14 de gener de 2026]. ISSN: 1097-0193. [Disponible a: https://hdl.handle.net/2445/206256]

Exportar metadades

JSON - METS

Compartir registre