Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c)  J.C. Naranjo et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222606

Cyclic coverings of genus 2 curves of Sophie Germain type

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We consider cyclic unramified coverings of degree $d$ of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order $d$. The rich geometry of the associated Prym map has been studied in several papers, and the cases $d=2,3,5,7$ are quite well understood. Nevertheless, very little is known for higher values of $d$. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for $d \geq 11$ prime such that $\frac{d-1}{2}$ is also prime. We use results of arithmetic nature on $G L_2$-type abelian varieties combined with theta-duality techniques.

Citació

Citació

NARANJO DEL VAL, Juan carlos, ORTEGA ORTEGA, Angela, SPELTA, Irene. Cyclic coverings of genus 2 curves of Sophie Germain type. _2024_. vol. 12. [consulta: 7 de febrer de 2026]. ISSN: 2050-5094. [Disponible a: https://hdl.handle.net/2445/222606]

Exportar metadades

JSON - METS

Compartir registre