Cyclic coverings of genus 2 curves of Sophie Germain type

dc.contributor.authorNaranjo del Val, Juan Carlos
dc.contributor.authorOrtega Ortega, Angela
dc.contributor.authorSpelta, Irene
dc.date.accessioned2025-07-28T08:22:37Z
dc.date.available2025-07-28T08:22:37Z
dc.date.issued2024-05-21
dc.date.updated2025-07-28T08:22:37Z
dc.description.abstractWe consider cyclic unramified coverings of degree $d$ of irreducible complex smooth genus 2 curves and their corresponding Prym varieties. They provide natural examples of polarized abelian varieties with automorphisms of order $d$. The rich geometry of the associated Prym map has been studied in several papers, and the cases $d=2,3,5,7$ are quite well understood. Nevertheless, very little is known for higher values of $d$. In this paper, we investigate whether the covering can be reconstructed from its Prym variety, that is, whether the generic Prym Torelli theorem holds for these coverings. We prove this is so for the so-called Sophie Germain prime numbers, that is, for $d \geq 11$ prime such that $\frac{d-1}{2}$ is also prime. We use results of arithmetic nature on $G L_2$-type abelian varieties combined with theta-duality techniques.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec747328
dc.identifier.issn2050-5094
dc.identifier.urihttps://hdl.handle.net/2445/222606
dc.language.isoeng
dc.relation.isformatofReproducció del document publicat a: https://doi.org/doi:10.1017/fms.2024.42
dc.relation.ispartof2024, vol. 12
dc.relation.urihttps://doi.org/doi:10.1017/fms.2024.42
dc.rightscc-by (c) J.C. Naranjo et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFormes de Jacobi
dc.subject.classificationVarietats abelianes
dc.subject.classificationCorbes algebraiques
dc.subject.otherJacobi forms
dc.subject.otherAbelian varieties
dc.subject.otherAlgebraic curves
dc.titleCyclic coverings of genus 2 curves of Sophie Germain type
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
857272.pdf
Mida:
333.64 KB
Format:
Adobe Portable Document Format