Families of determinantal schemes

dc.contributor.authorKleppe, J.O.
dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)
dc.date.accessioned2016-03-17T16:32:15Z
dc.date.available2016-03-17T16:32:15Z
dc.date.issued2011
dc.date.updated2016-03-17T16:32:20Z
dc.description.abstractGiven integers $ a_0\le a_1\le \cdots \le a_{t+c-2}$ and $ b_1\le \cdots \le b_t$, we denote by $ W(\underline{b};\underline{a})\subset \textrm{Hilb}^p(\mathbb{P}^{n})$ the locus of good determinantal schemes $ X\subset \mathbb{P}^{n}$ of codimension $ c$ defined by the maximal minors of a $ t\times (t+c-1)$ homogeneous matrix with entries homogeneous polynomials of degree $ a_j-b_i$. The goal of this paper is to extend and complete the results given by the authors in an earlier paper and determine under weakened numerical assumptions the dimension of $ W(\underline{b};\underline{a})$ as well as whether the closure of $ W(\underline{b};\underline{a})$ is a generically smooth irreducible component of $ \textrm{Hilb}^p(\mathbb{P}^{n})$.
dc.format.extent13 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec589162
dc.identifier.issn0002-9939
dc.identifier.urihttps://hdl.handle.net/2445/96593
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9939-2011-10802-5
dc.relation.ispartofProceedings of the American Mathematical Society, 2011, vol. 139, p. 3831-3843
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9939-2011-10802-5
dc.rights(c) American Mathematical Society (AMS), 2011
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÀlgebra
dc.subject.classificationEsquemes (Geometria algebraica)
dc.subject.otherAlgebra
dc.subject.otherSchemes (Algebraic geometry)
dc.titleFamilies of determinantal schemes
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
589162.pdf
Mida:
267.97 KB
Format:
Adobe Portable Document Format