Transference for radial multipliers and dimension free estimates

dc.contributor.authorAuscher, Pascal, 1963-cat
dc.contributor.authorCarro Rossell, María Jesúscat
dc.date.accessioned2009-04-16T08:33:08Z
dc.date.available2009-04-16T08:33:08Z
dc.date.issued1994cat
dc.description.abstractFor a large class of radial multipliers on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, we obtain bounds that do not depend on the dimension n. These estimates apply to well-known multiplier operators and also give another proof of the boundedness of the Hardy-Littlewood maximal function over Euclidean balls on $ {L^p}({{\mathbf{R}}^{\mathbf{n}}})$, $ p \geq 2$, with constant independent of the dimension. The proof is based on the corresponding result for the Riesz transforms and the method of rotations.
dc.format.extent20 p.cat
dc.format.mimetypeapplication/pdfeng
dc.identifier.idgrec83129cat
dc.identifier.issn1088-6850cat
dc.identifier.urihttps://hdl.handle.net/2445/7762
dc.language.isoengeng
dc.publisherAmerican Mathematical Societycat
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1090/S0002-9947-1994-1152319-9cat
dc.relation.ispartofTransactions of the American Mathematical Society, 1994, vol. 342, núm. 2, p. 575-593.cat
dc.relation.urihttps://doi.org/10.1090/S0002-9947-1994-1152319-9
dc.rights(c) American Mathematical Society, 1994cat
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMultiplicadors (Matemàtica)cat
dc.subject.otherMultiplierseng
dc.subject.otherMaximal functionseng
dc.titleTransference for radial multipliers and dimension free estimateseng
dc.typeinfo:eu-repo/semantics/articleeng
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
83129.pdf
Mida:
1.59 MB
Format:
Adobe Portable Document Format