On the minimal free resolution of $n+1$ general forms

dc.contributor.authorMigliore, Juan C. (Juan Carlos), 1956-
dc.contributor.authorMiró-Roig, Rosa M. (Rosa Maria)
dc.date.accessioned2016-03-16T16:11:00Z
dc.date.available2016-03-16T16:11:00Z
dc.date.issued2003
dc.date.updated2016-03-16T16:11:05Z
dc.description.abstractWe give very good bounds on the graded Betti numbers in many other cases. We also extend a result of M. Boij by giving the graded Betti numbers for a generic compressed Gorenstein algebra (i.e., one for which the Hilbert function is maximal, given $n$ and the socle degree) when $n$ is even and the socle degree is large. A recurring theme is to examine when and why the minimal free resolution may be forced to have redundant summands. We conjecture that if the forms all have the same degree, then there are no redundant summands, and we present some evidence for this conjecture.
dc.format.extent36 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec589125
dc.identifier.issn0002-9947
dc.identifier.urihttps://hdl.handle.net/2445/96551
dc.language.isoeng
dc.publisherAmerican Mathematical Society (AMS)
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1090/S0002-9947-02-03092-1
dc.relation.ispartofTransactions of the American Mathematical Society, 2003, vol. 355, p. 1-36
dc.relation.urihttp://dx.doi.org/10.1090/S0002-9947-02-03092-1
dc.rights(c) American Mathematical Society (AMS), 2003
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationÀlgebra
dc.subject.classificationTopologia algebraica
dc.subject.otherAlgebra
dc.subject.otherAlgebraic topology
dc.titleOn the minimal free resolution of $n+1$ general forms
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
589125.pdf
Mida:
662.29 KB
Format:
Adobe Portable Document Format