Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/194104

Constructions of Lindelöf scattered P-spaces

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

We construct locally Lindelöf scattered P-spaces (LLSP spaces, for short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width $\omega_1$ and height $\omega_2$ and that it is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\omega_3$. Also, we prove a stepping up theorem which, for every cardinal $\lambda \geq \omega_2$, permits us to construct from an LLSP space of width $\omega_1$ and height $\lambda$ satisfying certain additional properties an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\lambda^{+}$. As consequences of the above results, we obtain the following theorems: (1) For every ordinal $\alpha<\omega_3$ there is an LLSP space of width $\omega_1$ and height $\alpha$. (2) It is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\omega_4$.

Citació

Citació

MARTÍNEZ ALONSO, Juan carlos, SOUKUP, Lajos. Constructions of Lindelöf scattered P-spaces. _Fundamenta Mathematicae_. 2022. Vol. 259, núm. 3, pàgs. 271-286. [consulta: 23 de gener de 2026]. ISSN: 0016-2736. [Disponible a: https://hdl.handle.net/2445/194104]

Exportar metadades

JSON - METS

Compartir registre