Constructions of Lindelöf scattered P-spaces

dc.contributor.authorMartínez Alonso, Juan Carlos
dc.contributor.authorSoukup, Lajos
dc.date.accessioned2023-02-24T08:11:45Z
dc.date.available2023-02-24T08:11:45Z
dc.date.issued2022-09-20
dc.date.updated2023-02-24T08:11:45Z
dc.description.abstractWe construct locally Lindelöf scattered P-spaces (LLSP spaces, for short) with prescribed widths and heights under different set-theoretic assumptions. We prove that there is an LLSP space of width $\omega_1$ and height $\omega_2$ and that it is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\omega_3$. Also, we prove a stepping up theorem which, for every cardinal $\lambda \geq \omega_2$, permits us to construct from an LLSP space of width $\omega_1$ and height $\lambda$ satisfying certain additional properties an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\lambda^{+}$. As consequences of the above results, we obtain the following theorems: (1) For every ordinal $\alpha<\omega_3$ there is an LLSP space of width $\omega_1$ and height $\alpha$. (2) It is relatively consistent with ZFC that there is an LLSP space of width $\omega_1$ and height $\alpha$ for every ordinal $\alpha<\omega_4$.
dc.format.extent16 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec726103
dc.identifier.issn0016-2736
dc.identifier.urihttps://hdl.handle.net/2445/194104
dc.language.isoeng
dc.publisherInstitute of Mathematics, Polish Academy of Sciences
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.4064/fm228-7-2022
dc.relation.ispartofFundamenta Mathematicae, 2022, vol. 259, num. 3, p. 271-286
dc.relation.urihttps://doi.org/10.4064/fm228-7-2022
dc.rights(c) Institute of Mathematics, Polish Academy of Sciences, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationNombres cardinals
dc.subject.classificationTeoria de conjunts
dc.subject.classificationTopologia
dc.subject.classificationEspais topològics
dc.subject.otherCardinal numbers
dc.subject.otherSet theory
dc.subject.otherTopology
dc.subject.otherTopological spaces
dc.titleConstructions of Lindelöf scattered P-spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
726103.pdf
Mida:
175.83 KB
Format:
Adobe Portable Document Format