Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Verónica Pericacho Allende, 2013
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/53927

Cuaterniones y octoniones

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The first section of this work discusses algebras. Particularly, the algebras which interest us are division algebras, which are algebras over a field where division is always possible. Then we introduce quaternions. We show that quaternions are a non-commutative division algebra. Also we will see how can we express a quaternion through real and complex matrices of dimensions 2 and 4 respectively, and why the equation $z^2 + 1 = 0$ with $z \in \mathbb{H}$ has infinite solutions. In the last part of this section, we prove the Frobenius Theorem which affirms that the only division algebras of finite dimension over $R$ are the real numbers, the complex numbers and the quaternions. Hamilton discovered quaternions with the idea of using them to study rotations in 3-dimensional space. In the third section of this work we will see how to represent 3-dimensional rotations with unit quaternions. We will introduce the octonions in the fourth part of this work. We will see that octonions form a non-associative division algebra. In the next section we introduce the Cayley-Dickson construction for normed algebras. By this construction, we can obtain the complex numbers from the real numbers, the quaternions from the complex numbers and y the octonions from the quaternions. Finally, we will see that we can define a cross product in $\mathbb{R}^n$ only if $n$ = 1, 3 or 7. We will use this fact to prove a theorem, asserting that the possible dimensions for a normed algebra over $\mathbb{R}$ are only 1, 2, 4, 8. We will deduce from this statement a Theorem of Hurwitz which states that if $n\in\mathbb{N}$, the product of two sums of $n$ squares can be expressed as a sum of $n$ squares only if $n = 1,2, 4, 8$.

Descripció

Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Ricardo García López

Citació

Citació

PERICACHO ALLENDE, Verónica. Cuaterniones y octoniones. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/53927]

Exportar metadades

JSON - METS

Compartir registre