Carregant...
Fitxers
Tipus de document
Treball de fi de grauData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/53927
Cuaterniones y octoniones
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The first section of this work discusses algebras. Particularly, the algebras which interest us are division algebras, which are algebras over a field where division is always possible. Then we introduce quaternions. We show that quaternions are a non-commutative division algebra. Also we will see how can we express a quaternion through real and complex matrices of dimensions 2 and 4 respectively, and why the equation $z^2 + 1 = 0$ with $z \in \mathbb{H}$ has infinite solutions. In the last part of this section, we prove the Frobenius Theorem which affirms that the only division algebras of finite dimension over $R$ are the real numbers, the complex numbers and the quaternions.
Hamilton discovered quaternions with the idea of using them to study rotations in 3-dimensional space. In the third section of this work we will see how to represent 3-dimensional rotations with unit quaternions.
We will introduce the octonions in the fourth part of this work. We will see that octonions form a non-associative division algebra.
In the next section we introduce the Cayley-Dickson construction for normed algebras.
By this construction, we can obtain the complex numbers from the real numbers, the quaternions from the complex numbers and y the octonions from the quaternions.
Finally, we will see that we can define a cross product in $\mathbb{R}^n$ only if $n$ = 1, 3 or 7. We will use this fact to prove a theorem, asserting that the possible dimensions for a normed algebra over $\mathbb{R}$ are only 1, 2, 4, 8. We will deduce from this statement a Theorem of Hurwitz which states that if $n\in\mathbb{N}$, the product of two sums of $n$ squares can be expressed as a sum of $n$ squares only if $n = 1,2, 4, 8$.
Descripció
Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2013, Director: Ricardo García López
Matèries (anglès)
Citació
Col·leccions
Citació
PERICACHO ALLENDE, Verónica. Cuaterniones y octoniones. [consulta: 21 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/53927]