Exploring the error threshold through a Poincaré compactification

dc.contributor.advisorJarque i Ribera, Xavier
dc.contributor.advisorSardanyés Cayuela, Josep
dc.contributor.authorColomer Armenteros, Raquel
dc.date.accessioned2018-04-24T08:40:10Z
dc.date.available2018-04-24T08:40:10Z
dc.date.issued2017-06-28
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2017, Director: Xavier Jarque i Ribera i Josep Sardanyés Cayuelaca
dc.description.abstract[en] Continuous dynamical systems have been deeply studied since Newtonian mechanics appeared. For decades, qualitative dynamics of planar differential systems have been developed achieving a big number of results, relegating the study of infinity to a second place. On one hand, this Bachelor’s degree final project aims to examine in detail the behaviour of a vector field on a neighborhood of infinity. With this purpose, we will explain the Poincaré Compactification and use it to investigate the error threshold at infinity in the quasispecies model. On the other hand, we will focus on quasispecies theory, a biological theory widely studied in the context of the origin of life and RNA viruses. We will work on a viral quasispecies model, introducing a logistic constraint assumption that will let us analyze the error threshold in the finite plane. Under the logistic approach, the bifurcation we have characterized for the error threshold is a transcritical bifurcation. Finally, we will use numerical results to provide further insights on the dynamics and the bifurcations.ca
dc.format.extent77 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/121809
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Raquel Colomer Armenteros, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationCamps vectorials
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEquacions diferencials ordinàriesca
dc.subject.classificationModels matemàticsca
dc.subject.classificationRNAca
dc.subject.classificationOrigen de la vidaca
dc.subject.otherVector fields
dc.subject.otherBachelor's theses
dc.subject.otherOrdinary differential equationsen
dc.subject.otherMathematical modelsen
dc.subject.otherRNAen
dc.subject.otherOrigin of lifeen
dc.titleExploring the error threshold through a Poincaré compactificationca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
12.68 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria