Norming Sets

dc.contributor.advisorOrtega Cerdà, Joaquim
dc.contributor.authorAguilar Hernández, Tanausú
dc.date.accessioned2017-02-24T11:33:54Z
dc.date.available2017-02-24T11:33:54Z
dc.date.issued2016-06-26
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2016, Director: Joaquim Ortega Cerdàca
dc.description.abstractThe main objective of this report is the study of the Logvinenko-Sereda sets for different function spaces. It consists in characterizing the subsets $G \subset \Omega$ such that there is a constant $C>$ 0 where $\|f\|^2\leq C\int_{g}|f|^{2} dm$. Following to the proof that appears in the book of V. Havin and B. Jöricke we have obtained the Logvinenko-Sereda theorem for the Paley-Wiener space. Moreover, for the same function space we have found another argument based on the proof of Daniel H. Luecking for the Bergman space in the ball $B=\{x\in\mathbb{R}^{n}:|x|<1\}$. In this case, we have taken the same structure of the proof with the translations group and euclidean balls instead of the automorphism group and hyperbolic balls. Next, considering the same idea as for the Paley-Wiener space we have achieved the Logvinenko-Sereda theorem for the Classic Fock space. Finally, we have finished with the analogous result for the space of polynomials in the torus.ca
dc.format.extent51 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/107362
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Tanausú Aguilar Hernández, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationNuclis de Bergmancat
dc.subject.classificationAnàlisi funcionalcat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationAnàlisi harmònicaca
dc.subject.classificationFuncions harmòniquesca
dc.subject.otherBergman kernel functionseng
dc.subject.otherFunctional analysiseng
dc.subject.otherMaster's theseseng
dc.subject.otherHarmonic analysiseng
dc.subject.otherHarmonic functionseng
dc.titleNorming Setsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
435.22 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria