Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/227127
On endomorphism universality of sparse graph classes.
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We show that every commutative idempotent monoid (a.k.a. lattice) is the endomorphism monoid of a subcubic graph. This solves a problem of Babai and Pultr and the degree bound is best-possible. On the other hand, we show that no class excluding a minor can have all commutative idempotent monoids among its endomorphism monoids. As a by-product, we prove that monoids can be represented by graphs of bounded expansion (reproving a result of Nešetřil and Ossona de Mendez) and $k$-cancellative monoids can be represented by graphs of bounded degree. Finally, we show that not all completely regular monoids can be represented by graphs excluding topological minor (strengthening a result of Babai and Pultr).
Matèries (anglès)
Citació
Citació
KNAUER, Kolja, PUIG I SURROCA, G.. On endomorphism universality of sparse graph classes.. _Journal of Graph Theory_. 2025. Vol. 110, núm. 2, pàgs. 223-244. [consulta: 21 de febrer de 2026]. ISSN: 0364-9024. [Disponible a: https://hdl.handle.net/2445/227127]