On endomorphism universality of sparse graph classes.

dc.contributor.authorKnauer, Kolja
dc.contributor.authorPuig i Surroca, G.
dc.date.accessioned2026-02-20T10:53:58Z
dc.date.available2026-02-20T10:53:58Z
dc.date.issued2025-07-01
dc.date.updated2026-02-20T10:53:59Z
dc.description.abstractWe show that every commutative idempotent monoid (a.k.a. lattice) is the endomorphism monoid of a subcubic graph. This solves a problem of Babai and Pultr and the degree bound is best-possible. On the other hand, we show that no class excluding a minor can have all commutative idempotent monoids among its endomorphism monoids. As a by-product, we prove that monoids can be represented by graphs of bounded expansion (reproving a result of Nešetřil and Ossona de Mendez) and $k$-cancellative monoids can be represented by graphs of bounded degree. Finally, we show that not all completely regular monoids can be represented by graphs excluding topological minor (strengthening a result of Babai and Pultr).
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec765960
dc.identifier.issn0364-9024
dc.identifier.urihttps://hdl.handle.net/2445/227127
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/jgt.23262
dc.relation.ispartofJournal of Graph Theory, 2025, vol. 110, num.2, p. 223-244
dc.relation.urihttps://doi.org/10.1002/jgt.23262
dc.rightscc by-nc-nd (c) Kolja Knauer et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationIsomorfismes (Matemàtica)
dc.subject.classificationTeoria de grafs
dc.subject.classificationRepresentacions de semigrups
dc.subject.otherIsomorphisms (Mathematics)
dc.subject.otherGraph theory
dc.subject.otherRepresentations of semigroups
dc.titleOn endomorphism universality of sparse graph classes.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
919381.pdf
Mida:
1.15 MB
Format:
Adobe Portable Document Format