El Lasso: regularització i selecció de predictors

dc.contributor.advisorFortiana Gregori, Josep
dc.contributor.authorIglesias Munilla, Andrea
dc.date.accessioned2022-04-26T10:35:03Z
dc.date.available2022-04-26T10:35:03Z
dc.date.issued2021-06-20
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Josep Fortiana Gregorica
dc.description.abstract[en] Lasso (Least Absolute Shrinkage and Selection Operator) is a regression method that performs both regularization and variable selection, improving prediction accuracy and interpretability of the resulting model. In this project we follow evolution from the plain linear model, through Ridge regression, for many years the most popular technique to improve the precision of predictions, to Lasso. We delve into numerical procedures for calculating Lasso solutions: coordinate descent and LARS. We see some extensions of Lasso such as Elastic Net regression, a neat improvement when optimality fails. We illustrate these methods with several real data examples using the R programming language (see notebooks and HTML files in appendices to the main text).ca
dc.format.extent35 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/185163
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Andrea Iglesias Munilla, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationAnàlisi de regressióca
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationEstadísticaca
dc.subject.classificationDades massivesca
dc.subject.otherRegression analysisen
dc.subject.otherBachelor's theses
dc.subject.otherStatisticsen
dc.subject.otherBig dataen
dc.titleEl Lasso: regularització i selecció de predictorsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfg_andrea_iglesias_munilla.pdf
Mida:
634.05 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
notebooks.zip
Mida:
1.12 MB
Format:
ZIP file
Descripció:
Codi font