Carregant...
Miniatura

Tipus de document

Tesi

Versió

Versió publicada

Data de publicació

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/120897

Bioengineering single-protein wires

Títol de la revista

ISSN de la revista

Títol del volum

Resum

[eng] Electron Transfer (ET) is undoubtedly one of the most important processes in life. Molecularly well-defined ET pathways in complex protein ensembles play a vital role in biological processes such as cell respiration or photosynthesis. The fundamental understanding of ET processes in biology is important not only to understand such key natural processes but also to advance in the design of biomolecule/electrode interfaces for Bioelectronic applications. The development of new techniques such as scanning probe microscopies (SPM) played a key role. In particular, the electrochemical scanning tunnelling microscopy (EC-STM) has been exploited to in situ monitor the ET rate as a function of the applied potential of individual metalloproteins immobilized on an Au electrode thanks to the single-molecule spatial resolution and the electrochemical gate capabilities. Azurin from Pseudomonas aeruginosa is a widely studied redox protein model both in bulk and at the single molecule level. Its globular structure contains a coordinated copper ion, which makes the protein capable of exchanging electrons by switching its redox state (Cu I/II) and supports its role as a soluble electron carrier in the respiratory chain of bacteria. In this thesis, we will show our advances on the design and characterization of single-protein devices using a Cu-Azurin metalloprotein model. We have demonstrated transistor like-behaviour in an electrochemically-gated single-protein wire that operates at very low voltages thanks to the Cu-Azurin redox properties. It was demonstrated that the conductance varies depending on the redox state of the Cu centre, having its maximum value at the redox-midpoint. We have also analysed the spontaneous formation of single-Azurin electrical contacts through the monitored current when the two ECSTM electrodes were placed at a fixed distance. Discrete switching events for the conductance were observed, whose frequency depends on the applied electrochemical conditions and, therefore, they were univocally ascribed to discrete changes in the redox state of the trapped protein. In order to tailor the charge transport behaviour of the single-protein wire, we have synthesized several mutants of the protein by exploiting point-site bioengineering schemes at different positions of the protein second coordination sphere. Our results show that we can rationally change the transport mechanism of the single-protein device by studying the effect of the specific residue modification on the particular ET pathways in the protein backbone.

Descripció

Citació

Citació

POZUELO RUIZ, Marta. Bioengineering single-protein wires. [consulta: 6 de desembre de 2025]. [Disponible a: https://hdl.handle.net/2445/120897]

Exportar metadades

JSON - METS

Compartir registre