Prediction of acute myeloid leukaemia risk in healthy individuals

dc.contributor.authorAbelson, Sagi
dc.contributor.authorCollord, Grace
dc.contributor.authorNg, Stanley W. K.
dc.contributor.authorWeissbrod, Omer
dc.contributor.authorCohen, Netta Mendelson
dc.contributor.authorNiemeyer, Elisabeth
dc.contributor.authorBarda, Noam
dc.contributor.authorZuzarte, Philip C.
dc.contributor.authorHeisler, Lawrence
dc.contributor.authorSundaravadanam, Yogi
dc.contributor.authorLuben, Robert
dc.contributor.authorHayat, Shabina
dc.contributor.authorWang, Ting Ting
dc.contributor.authorZhao, Zhen
dc.contributor.authorCirlan, Iulia
dc.contributor.authorPugh, Trevor J.
dc.contributor.authorSoave, David
dc.contributor.authorNg, Karen
dc.contributor.authorLatimer, Calli
dc.contributor.authorHardy, Claire
dc.contributor.authorRaine, Keiran
dc.contributor.authorJones, David
dc.contributor.authorHoult, Diana
dc.contributor.authorBritten, Abigail
dc.contributor.authorMcPherson, John D.
dc.contributor.authorJohansson, Mattias
dc.contributor.authorMbabaali, Faridah
dc.contributor.authorEagles, Jenna
dc.contributor.authorMillers, Jessica K.
dc.contributor.authorPasternack, Danielle
dc.contributor.authorTimms, Lee
dc.contributor.authorKrzyzanowski, Paul
dc.contributor.authorAwadalla, Philip
dc.contributor.authorCosta, Rui
dc.contributor.authorSegal, Eran
dc.contributor.authorBratman, Scott V.
dc.contributor.authorBeer, Philip
dc.contributor.authorBehjati, Sam
dc.contributor.authorMartincorena, Inigo
dc.contributor.authorWang, Jean C. Y.
dc.contributor.authorBowles, Kristian M.
dc.contributor.authorQuirós, José Ramón
dc.contributor.authorKarakatsani, Anna
dc.contributor.authorVecchia, Carlo La
dc.contributor.authorTrichopoulou, Antonia
dc.contributor.authorSalamanca Fernández, Elena
dc.contributor.authorHuerta Castaño, José María
dc.contributor.authorBarricarte, Aurelio
dc.contributor.authorTravis, Ruth C.
dc.contributor.authorTumino, Rosario
dc.contributor.authorMasala, Giovanna
dc.contributor.authorBoeing, Heiner
dc.contributor.authorPanico, Salvatore
dc.contributor.authorKaaks, Rudolf
dc.contributor.authorKrämer, Alwin
dc.contributor.authorSieri, Sabina
dc.contributor.authorRiboli, Elio
dc.contributor.authorVineis, Paolo
dc.contributor.authorFoll, Matthieu
dc.contributor.authorMcKay, James D.
dc.contributor.authorPolidoro, Silvia
dc.contributor.authorSala Serra, Núria
dc.contributor.authorKhaw, Kay-Tee
dc.contributor.authorVermeulen, Roel
dc.contributor.authorCampbell, Peter J.
dc.contributor.authorPapaemmanuil, Elli
dc.contributor.authorMinden, Mark D.
dc.contributor.authorTanay, Amos
dc.contributor.authorBalicer, Ran D.
dc.contributor.authorWareham, Nicholas J.
dc.contributor.authorGerstung, Moritz
dc.contributor.authorDick, John E.
dc.contributor.authorBrennan, Paul
dc.contributor.authorVassiliou, George S.
dc.contributor.authorShlush, Liran I.
dc.date.accessioned2020-11-30T11:39:11Z
dc.date.available2020-11-30T11:39:11Z
dc.date.issued2018-07-19
dc.date.updated2020-11-11T17:44:44Z
dc.description.abstractThe incidence of acute myeloid leukaemia (AML) increases with age and mortality exceeds 90% when diagnosed after age 65. Most cases arise without any detectable early symptoms and patients usually present with the acute complications of bone marrow failure(1). The onset of such de novo AML cases is typically preceded by the accumulation of somatic mutations in preleukaemic haematopoietic stem and progenitor cells (HSPCs) that undergo clonal expansion(2,3). However, recurrent AML mutations also accumulate in HSPCs during ageing of healthy individuals who do not develop AML, a phenomenon referred to as age-related clonal haematopoiesis (ARCH)(4-8). Here we use deep sequencing to analyse genes that are recurrently mutated in AML to distinguish between individuals who have a high risk of developing AML and those with benign ARCH. We analysed peripheral blood cells from 95 individuals that were obtained on average 6.3 years before AML diagnosis (pre-AML group), together with 414 unselected age- and gender-matched individuals (control group). Pre-AML cases were distinct from controls and had more mutations per sample, higher variant allele frequencies, indicating greater clonal expansion, and showed enrichment of mutations in specific genes. Genetic parameters were used to derive a model that accurately predicted AML-free survival; this model was validated in an independent cohort of 29 pre-AML cases and 262 controls. Because AML is rare, we also developed an AML predictive model using a large electronic health record database that identified individuals at greater risk. Collectively our findings provide proof-of-concept that it is possible to discriminate ARCH from pre-AML many years before malignant transformation. This could in future enable earlier detection and monitoring, and may help to inform intervention.
dc.format.extent23 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid29988082
dc.identifier.urihttps://hdl.handle.net/2445/172439
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41586-018-0317-6
dc.relation.ispartofNature, 2018, vol. 559, num. 7714, p. 400
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714731/EU//MAMLE
dc.relation.urihttps://doi.org/10.1038/s41586-018-0317-6
dc.rights(c) Macmillan Publishers Limited, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
dc.subject.classificationLeucèmia mieloide
dc.subject.classificationMortalitat
dc.subject.otherMyeloid leukemia
dc.subject.otherMortality
dc.titlePrediction of acute myeloid leukaemia risk in healthy individuals
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
AbelsonS.pdf
Mida:
4.64 MB
Format:
Adobe Portable Document Format