Un nou marc per analitzar transformers de visió. Aplicació a l'anàlisi d'imatges de menjar

dc.contributor.advisorRadeva, Petia
dc.contributor.advisorTatjer i Montaña, Joan Carles
dc.contributor.authorRial Figols, David
dc.date.accessioned2022-06-20T07:00:17Z
dc.date.available2022-06-20T07:00:17Z
dc.date.issued2022-01-24
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Petia Radeva i Joan Carles Tatjer i Montañaca
dc.description.abstract[en] The field of Deep Learning is constantly evolving to optimize the models that are developed and achieve a specific task with the best possible accuracy. It was in 2017 when Vaswani introduced a new neural network structure that would allow for a new evolution: transformers. Based on the concept of attention, introduced in 2014, transformers were able to quickly impose themselves on all-natural language processing tasks. It was not until 2020 that transformers, applied to image-related tasks started to be competitive. Furthermore, within less than two years they have been able to overcome the previous models of neural networks architectures, to end up prevailing with the best results. Among these image tasks, the problem of image classification stands out, which is to assign each image a label that describes it, as it is a problem that has historically been used to describe the evolution of Deep Learning and the progress made. Despite being at the forefront of all the tasks mentioned, transformers, especially image transformers, are still a black box as to why they learn or what makes one transformer better than another. It is for this reason that this work is based on the study of transformers. Specifically, this paper aims to introduce the transformers and the basics needed to understand how they work, and then to understand and investigate how transformers learn dedicated to image classification, looking for their similarities and differences, and how they are characterized. In this work, we have proposed a comparative framework for transformers dedicated to the problem of image classification, based on the results achieved with the transformers ViT, BEiT, DeiT, Swin and CSWin on the set of food images Food-101. This comparison framework is based on the different properties and evolution of the various weight matrices that make up these transformers, aided by the unique values of the matrices and their rules and ranges. At the same time, a form of training is also suggested to make it faster in a specific data set, reducing the time by 33% without losing accuracy.ca
dc.format.extent54 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/186800
dc.language.isocatca
dc.rightsmemòria: cc-nc-nd (c) David Rial Figols, 2022
dc.rightscodi: GPL (c) David Rial Figols, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationVisió per ordinadorca
dc.subject.classificationSistemes classificadors (Intel·ligència artificial)ca
dc.subject.classificationAliments
dc.subject.otherMachine learningen
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherComputer softwareen
dc.subject.otherComputer visionen
dc.subject.otherLearning classifier systemsen
dc.subject.otherBachelor's thesesen
dc.subject.otherFood
dc.titleUn nou marc per analitzar transformers de visió. Aplicació a l'anàlisi d'imatges de menjarca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi.zip
Mida:
20.41 KB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfg_rial_figols_david.pdf
Mida:
5.17 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria