Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/213151
Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a Gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an Ansatz for the wave function and use machine learning techniques to variationally minimize the energy of systems from two to six particles. We provide extensive benchmarks for this toy model with other many-body methods, including exact diagonalization and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the nonperturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.
Matèries
Matèries (anglès)
Citació
Citació
KEEBLE, James, DRISSI, Mehdi, ROJO-FRANCÀS, Abel, JULIÁ-DÍAZ, Bruno, RÍOS HUGUET, Arnau. Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states. _Physical Review C_. 2023. Vol. 108, núm. 1-25. [consulta: 23 de gener de 2026]. ISSN: 2469-9985. [Disponible a: https://hdl.handle.net/2445/213151]