Machine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states

dc.contributor.authorKeeble, James
dc.contributor.authorDrissi, Mehdi
dc.contributor.authorRojo-Francàs, Abel
dc.contributor.authorJuliá-Díaz, Bruno
dc.contributor.authorRíos Huguet, Arnau
dc.date.accessioned2024-06-14T15:14:58Z
dc.date.available2024-06-14T15:14:58Z
dc.date.issued2023-11-20
dc.date.updated2024-06-14T15:15:03Z
dc.description.abstractWe compute the ground-state properties of fully polarized, trapped, one-dimensional fermionic systems interacting through a Gaussian potential. We use an antisymmetric artificial neural network, or neural quantum state, as an Ansatz for the wave function and use machine learning techniques to variationally minimize the energy of systems from two to six particles. We provide extensive benchmarks for this toy model with other many-body methods, including exact diagonalization and the Hartree-Fock approximation. The neural quantum state provides the best energies across a wide range of interaction strengths. We find very different ground states depending on the sign of the interaction. In the nonperturbative repulsive regime, the system asymptotically reaches crystalline order. In contrast, the strongly attractive regime shows signs of bosonization. The neural quantum state continuously learns these different phases with an almost constant number of parameters and a very modest increase in computational time with the number of particles.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec743139
dc.identifier.issn2469-9985
dc.identifier.urihttps://hdl.handle.net/2445/213151
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevA.108.063320
dc.relation.ispartofPhysical Review C, 2023, num.108, p. 1-25
dc.relation.urihttps://doi.org/10.1103/PhysRevA.108.063320
dc.rights(c) American Physical Society, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationMatèria condensada
dc.subject.classificationAprenentatge automàtic
dc.subject.otherCondensed matter
dc.subject.otherMachine learning
dc.titleMachine learning one-dimensional spinless trapped fermionic systems with neural-network quantum states
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
843948.pdf
Mida:
12.79 MB
Format:
Adobe Portable Document Format