El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/136720

UHPLC-HRMS (Orbitrap) fingerprinting in the classification and authentication of cranberry-based natural products and pharmaceuticals using multivariate calibration methods

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

UHPLC-HRMS (Orbitrap) fingerprinting in negative and positive H-ESI mode was applied to the characterization, classification and authentication of cranberry-based natural and pharmaceutical products. HRMS data in full scan mode (m/z 100-1500) at a resolution of 70,000 full-width at half maximum was recorded and processed with MSConvert software to obtain a profile of peak intensities in function of m/z values and retention times. A threshold peak filter of absolute intensity (105 counts) was applied to reduce data complexity. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) revealed patterns able to discriminate the analyzed samples according to the fruit of origin (cranberry, grape, blueberry and raspberry). Discrimination among cranberry-based natural and cranberry-based pharmaceutical preparations was also achieved. Both, UHPLC-HRMS fingerprints in negative and positive H-ESI modes, as well as the data fusion of both acquisition modes, showed to be good chemical descriptors to address cranberry extracts authentication. Validation of the proposed methodology showed a prediction rate of 100% of the samples. Obtained data was further treated by partial least squares (PLS) regression to identify frauds and quantify the percentage of adulterant fruits in cranberry-fruit extracts, achieving prediction errors in the range 0.17-3.86%.

Citació

Citació

BARBOSA, Sergio, PARDO-MATES, Naiara, HIDALGO-SERRANO, Míriam, SAURINA, Javier, PUIGNOU I GARCIA, Lluís, NÚÑEZ BURCIO, Oscar. UHPLC-HRMS (Orbitrap) fingerprinting in the classification and authentication of cranberry-based natural products and pharmaceuticals using multivariate calibration methods. _Analytical Methods_. 2019. Vol. 11, núm. 26, pàgs. 3341-3349. [consulta: 8 de gener de 2026]. ISSN: 1759-9660. [Disponible a: https://hdl.handle.net/2445/136720]

Exportar metadades

JSON - METS

Compartir registre