UHPLC-HRMS (Orbitrap) fingerprinting in the classification and authentication of cranberry-based natural products and pharmaceuticals using multivariate calibration methods

dc.contributor.authorBarbosa, Sergio
dc.contributor.authorPardo-Mates, Naiara
dc.contributor.authorHidalgo-Serrano, Míriam
dc.contributor.authorSaurina, Javier
dc.contributor.authorPuignou i Garcia, Lluís
dc.contributor.authorNúñez Burcio, Oscar
dc.date.accessioned2019-07-08T11:55:49Z
dc.date.issued2019-06-02
dc.date.updated2019-07-08T11:55:49Z
dc.description.abstractUHPLC-HRMS (Orbitrap) fingerprinting in negative and positive H-ESI mode was applied to the characterization, classification and authentication of cranberry-based natural and pharmaceutical products. HRMS data in full scan mode (m/z 100-1500) at a resolution of 70,000 full-width at half maximum was recorded and processed with MSConvert software to obtain a profile of peak intensities in function of m/z values and retention times. A threshold peak filter of absolute intensity (105 counts) was applied to reduce data complexity. Principal component analysis (PCA) and partial least squares-discriminant analysis (PLS-DA) revealed patterns able to discriminate the analyzed samples according to the fruit of origin (cranberry, grape, blueberry and raspberry). Discrimination among cranberry-based natural and cranberry-based pharmaceutical preparations was also achieved. Both, UHPLC-HRMS fingerprints in negative and positive H-ESI modes, as well as the data fusion of both acquisition modes, showed to be good chemical descriptors to address cranberry extracts authentication. Validation of the proposed methodology showed a prediction rate of 100% of the samples. Obtained data was further treated by partial least squares (PLS) regression to identify frauds and quantify the percentage of adulterant fruits in cranberry-fruit extracts, achieving prediction errors in the range 0.17-3.86%.
dc.format.extent25 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec690211
dc.identifier.issn1759-9660
dc.identifier.urihttps://hdl.handle.net/2445/136720
dc.language.isoeng
dc.publisherRoyal Society of Chemistry
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1039/C9AY00636B
dc.relation.ispartofAnalytical Methods, 2019, vol. 11, num. 26, p. 3341-3349
dc.relation.urihttps://doi.org/10.1039/C9AY00636B
dc.rights(c) Barbosa, Sergio et al., 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationEspectrometria de masses
dc.subject.classificationQuímica dels aliments
dc.subject.otherMass spectrometry
dc.subject.otherFood composition
dc.titleUHPLC-HRMS (Orbitrap) fingerprinting in the classification and authentication of cranberry-based natural products and pharmaceuticals using multivariate calibration methods
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
690211.pdf
Mida:
508.11 KB
Format:
Adobe Portable Document Format