Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Arnau Quindós Sánchez et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/207762

Self-supervised out-of-distribution detection in wireless capsule endoscopy images.

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

While deep learning has displayed excellent performance in a broad spectrum of application areas, neural networks still struggle to recognize what they have not seen, i.e., out-of-distribution (OOD) inputs. In the medical field, building robust models that are able to detect OOD images is highly critical, as these rare images could show diseases or anomalies that should be detected. In this study, we use wireless capsule endoscopy (WCE) images to present a novel patch-based self-supervised approach comprising three stages. First, we train a triplet network to learn vector representations of WCE image patches. Second, we cluster the patch embeddings to group patches in terms of visual similarity. Third, we use the cluster assignments as pseudolabels to train a patch classifier and use the Out-of-Distribution Detector for Neural Networks (ODIN) for OOD detection. The system has been tested on the Kvasir-capsule, a publicly released WCE dataset. Empirical results show an OOD detection improvement compared to baseline methods. Our method can detect unseen pathologies and anomalies such as lymphangiectasia, foreign bodies and blood with 𝐴𝑈 𝑅𝑂𝐶 > 0.6. This work presents an effective solution for OOD detection models without needing labeled images.

Citació

Citació

QUINDÓS SÁNCHEZ, Arnau, LAIZ TRECEÑO, Pablo, VITRIÀ I MARCA, Jordi, SEGUÍ MESQUIDA, Santi. Self-supervised out-of-distribution detection in wireless capsule endoscopy images.. _Artificial Intelligence in Medicine_. 2023. [consulta: 10 de gener de 2026]. ISSN: 0933-3657. [Disponible a: https://hdl.handle.net/2445/207762]

Exportar metadades

JSON - METS

Compartir registre