Self-supervised out-of-distribution detection in wireless capsule endoscopy images.

dc.contributor.authorQuindós Sánchez, Arnau
dc.contributor.authorLaiz Treceño, Pablo
dc.contributor.authorVitrià i Marca, Jordi
dc.contributor.authorSeguí Mesquida, Santi
dc.date.accessioned2024-02-19T10:29:28Z
dc.date.available2024-02-19T10:29:28Z
dc.date.issued2023-09-01
dc.date.updated2024-02-19T10:29:28Z
dc.description.abstractWhile deep learning has displayed excellent performance in a broad spectrum of application areas, neural networks still struggle to recognize what they have not seen, i.e., out-of-distribution (OOD) inputs. In the medical field, building robust models that are able to detect OOD images is highly critical, as these rare images could show diseases or anomalies that should be detected. In this study, we use wireless capsule endoscopy (WCE) images to present a novel patch-based self-supervised approach comprising three stages. First, we train a triplet network to learn vector representations of WCE image patches. Second, we cluster the patch embeddings to group patches in terms of visual similarity. Third, we use the cluster assignments as pseudolabels to train a patch classifier and use the Out-of-Distribution Detector for Neural Networks (ODIN) for OOD detection. The system has been tested on the Kvasir-capsule, a publicly released WCE dataset. Empirical results show an OOD detection improvement compared to baseline methods. Our method can detect unseen pathologies and anomalies such as lymphangiectasia, foreign bodies and blood with 𝐴𝑈 𝑅𝑂𝐶 > 0.6. This work presents an effective solution for OOD detection models without needing labeled images.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.doihttps://doi.org/10.1016/j.artmed.2023.102606
dc.identifier.idgrec739217
dc.identifier.issn0933-3657
dc.identifier.urihttps://hdl.handle.net/2445/207762
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofReproducció del document publicat a: 10.1016/j.artmed.2023.102606
dc.relation.ispartofArtificial Intelligence in Medicine, 2023
dc.rightscc-by-nc-nd (c) Arnau Quindós Sánchez et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationCàpsula endoscòpica
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationDiagnòstic per la imatge
dc.subject.otherCapsule endoscopy
dc.subject.otherNeural networks (Computer science)
dc.subject.otherDiagnostic imaging
dc.titleSelf-supervised out-of-distribution detection in wireless capsule endoscopy images.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
828150.pdf
Mida:
2.52 MB
Format:
Adobe Portable Document Format