Hankel Bilinear Forms on Generalized Fock-Sobolev Spaces on $C^n$

dc.contributor.authorCascante, Ma. Carme (Maria Carme)
dc.contributor.authorFàbrega Casamitjana, Joan
dc.contributor.authorPascuas Tijero, Daniel
dc.date.accessioned2023-02-08T18:52:22Z
dc.date.available2023-02-08T18:52:22Z
dc.date.issued2020
dc.date.updated2023-02-08T18:52:22Z
dc.description.abstractWe characterize the boundedness of Hankel bilinear forms on a product of generalized Fock-Sobolev spaces on $\mathbf{C}^n$ with respect to the weight $(1+|z|)^p e^{-\frac{\rho}{2}|*|^{2 t}}$, for $\ell \geq 1, \alpha>0$ and $\rho \in \mathbf{R}$. We obtain a weak decomposition of the Bergman kernel with estimates and a LittlewoodPaley formula, which are key ingredients in the proof of our main results. As an application, we characterize the boundedness, compactness and the membership in the Schatten class of small Hankel operators on these spaces.
dc.format.extent22 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec699963
dc.identifier.issn1239-629X
dc.identifier.urihttps://hdl.handle.net/2445/193293
dc.language.isoeng
dc.publisherAcademia Scientiarum Fennica
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.5186/aasfm.2020.4546
dc.relation.ispartofAnnales Academiae Scientiarum Fennicae. Mathematica, 2020, vol. 45, num. 2, p. 841-862
dc.relation.urihttps://doi.org/10.5186/aasfm.2020.4546
dc.rights(c) Academia Scientiarum Fennica, 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions de diverses variables complexes
dc.subject.classificationEspais analítics
dc.subject.classificationFuncions holomorfes
dc.subject.classificationTeoria d'operadors
dc.subject.otherFunctions of several complex variables
dc.subject.otherAnalytic spaces
dc.subject.otherHolomorphic functions
dc.subject.otherOperator theory
dc.titleHankel Bilinear Forms on Generalized Fock-Sobolev Spaces on $C^n$
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
699963.pdf
Mida:
298.19 KB
Format:
Adobe Portable Document Format