Carregant...
Miniatura

Tipus de document

Treball de fi de màster

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Iker Honorato López, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/213462

Transformers in depression detection from semi-structured psychological Interviews

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The expansive adoption of Transformer models across the Machine Learning landscape is undeniable, and health is not an exception. This study undertakes a rigorous exploration of the efficacy of these novel architectures in discerning depression indicators from semi-structured psychological interviews. A key focus of this study is the extrapolation of the pre-training knowledge inherent in these models, and the comparison with traditional state-of-the-art Machine Learning models. In doing so, the thesis proposes a comprehensive framework designed to facilitate objective comparison. The study extends its inquiry into the differential performance of text and speech modalities, in isolation and combination, within the context of depression detection. Moreover, this research delves into the importance of topical relevance in the detection process, culminating in an evaluative discussion of crucial themes integral to accurate depression detection. Ultimately, this thesis contributes to the deepening understanding of the complex interplay between Transformer models, modality use, and topic importance in the realm of depression detection.

Descripció

Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Jordi Vitrià i Marca, Javi Jiménez i Alberto Coca

Citació

Citació

HONORATO LÓPEZ, Iker. Transformers in depression detection from semi-structured psychological Interviews. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/213462]

Exportar metadades

JSON - METS

Compartir registre