Transformers in depression detection from semi-structured psychological Interviews

dc.contributor.authorHonorato López, Iker
dc.date.accessioned2024-06-20T08:55:21Z
dc.date.available2024-06-20T08:55:21Z
dc.date.issued2023-06-30
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Curs: 2022-2023. Tutor: Jordi Vitrià i Marca, Javi Jiménez i Alberto Cocaca
dc.description.abstractThe expansive adoption of Transformer models across the Machine Learning landscape is undeniable, and health is not an exception. This study undertakes a rigorous exploration of the efficacy of these novel architectures in discerning depression indicators from semi-structured psychological interviews. A key focus of this study is the extrapolation of the pre-training knowledge inherent in these models, and the comparison with traditional state-of-the-art Machine Learning models. In doing so, the thesis proposes a comprehensive framework designed to facilitate objective comparison. The study extends its inquiry into the differential performance of text and speech modalities, in isolation and combination, within the context of depression detection. Moreover, this research delves into the importance of topical relevance in the detection process, culminating in an evaluative discussion of crucial themes integral to accurate depression detection. Ultimately, this thesis contributes to the deepening understanding of the complex interplay between Transformer models, modality use, and topic importance in the realm of depression detection.ca
dc.format.extent58 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/213462
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Iker Honorato López, 2023
dc.rightscodi: GPL (c) Iker Honorato López, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTractament del llenguatge natural (Informàtica)
dc.subject.classificationDepressió psíquica
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherNatural language processing (Computer science)
dc.subject.otherMental depression
dc.subject.otherMaster's thesis
dc.titleTransformers in depression detection from semi-structured psychological Interviewsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
codi_font.zip
Mida:
4.54 MB
Format:
ZIP file
Descripció:
Codi font
Carregant...
Miniatura
Nom:
tfm_honorato_lopez_iker.pdf
Mida:
5.31 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria