Schottky via the punctual Hilbert scheme
| dc.contributor.author | Gulbrandsen, Martin G. | |
| dc.contributor.author | Lahoz Vilalta, Martí | |
| dc.date.accessioned | 2019-12-04T09:13:55Z | |
| dc.date.available | 2019-12-04T09:13:55Z | |
| dc.date.issued | 2017-12 | |
| dc.date.updated | 2019-12-04T09:13:55Z | |
| dc.description.abstract | We show that a smooth projective curve of genus $g$ can be reconstructed from its polarized Jacobian $(X, \Theta)$ as a certain locus in the Hilbert scheme $\mathrm{Hilb}^{d}(X)$ for $d=3$ and for $d=g+2$ defined by geometric conditions in terms of the polarization $\Theta$. The result is an application of the Gunning-Welters trisecant criterion and the Castelnuovo-Schottky theorem by Pareschi-Popa and Grushevsky, and its scheme theoretic extension by the authors. | |
| dc.format.extent | 9 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 692998 | |
| dc.identifier.issn | 0040-8735 | |
| dc.identifier.uri | https://hdl.handle.net/2445/146041 | |
| dc.language.iso | eng | |
| dc.publisher | Tohoku University | |
| dc.relation.isformatof | https://doi.org/10.2748/tmj/1512183632 | |
| dc.relation.ispartof | Tohoku Mathematical Journal, 2017, vol. 69, num. 4, p. 611-619 | |
| dc.relation.uri | https://doi.org/10.2748/tmj/1512183632 | |
| dc.rights | (c) Tohoku Mathematical Journal, 2017 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Corbes algebraiques | |
| dc.subject.classification | Cicles algebraics | |
| dc.subject.other | Algebraic curves | |
| dc.subject.other | Algebraic cycles | |
| dc.title | Schottky via the punctual Hilbert scheme | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1