Force loading explains spatial sensing of ligands by cells

dc.contributor.authorOria, Roger
dc.contributor.authorWiegand, Tina
dc.contributor.authorEscribano, Jorge
dc.contributor.authorElosegui Artola, Alberto
dc.contributor.authorUriarte, Juan José
dc.contributor.authorMoreno Pulido, Cristian
dc.contributor.authorPlatzman, Ilia
dc.contributor.authorDelcanale, Pietro
dc.contributor.authorAlbertazzi, Lorenzo
dc.contributor.authorNavajas Navarro, Daniel
dc.contributor.authorTrepat Guixer, Xavier
dc.contributor.authorGarcía Aznar, José Manuel
dc.contributor.authorCavalcanti Adam, Elisabetta Ada
dc.contributor.authorRoca-Cusachs Soulere, Pere
dc.date.accessioned2021-07-01T12:57:54Z
dc.date.available2021-07-01T12:57:54Z
dc.date.issued2017-12-14
dc.date.updated2021-07-01T12:57:54Z
dc.description.abstractCells can sense the density and distribution of extracellular matrix (ECM) molecules by means of individual integrin proteins and larger, integrin-containing adhesion complexes within the cell membrane. This spatial sensing drives cellular activity in a variety of normal and pathological contexts(1,2). Previous studies of cells on rigid glass surfaces have shown that spatial sensing of ECM ligands takes place at the nanometre scale, with integrin clustering and subsequent formation of focal adhesions impaired when single integrin-ligand bonds are separated by more than a few tens of nanometres(3-6). It has thus been suggested that a crosslinking 'adaptor' protein of this size might connect integrins to the actin cytoskeleton, acting as a molecular ruler that senses ligand spacing directly(3,7-9). Here, we develop gels whose rigidity and nanometrescale distribution of ECM ligands can be controlled and altered. We find that increasing the spacing between ligands promotes the growth of focal adhesions on low-rigidity substrates, but leads to adhesion collapse on more-rigid substrates. Furthermore, disordering the ligand distribution drastically increases adhesion growth, but reduces the rigidity threshold for adhesion collapse. The growth and collapse of focal adhesions are mirrored by, respectively, the nuclear or cytosolic localization of the transcriptional regulator protein YAP. We explain these findings not through direct sensing of ligand spacing, but by using an expanded computational molecular-clutch model(10,11), in which individual integrin-ECM bonds-the molecular clutches-respond to force loading by recruiting extra integrins, up to a maximum value. This generates more clutches, redistributing the overall force among them, and reducing the force loading per clutch. At high rigidity and high ligand spacing, maximum recruitment is reached, preventing further force redistribution and leading to adhesion collapse. Measurements of cellular traction forces and actin flow speeds support our model. Our results provide a general framework for how cells sense spatial and physical information at the nanoscale, precisely tuning the range of conditions at which they form adhesions and activate transcriptional regulation.
dc.format.extent6 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec676719
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/2445/178726
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/nature24662
dc.relation.ispartofNature, 2017, vol. 552, num. 7684, p. 219-224
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/731957/EU//MECHANO-CONTROL
dc.relation.urihttps://doi.org/10.1038/nature24662
dc.rights(c) Nature Publishing Group, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationMatriu extracel·lular
dc.subject.classificationNanociència
dc.subject.classificationIntegrines
dc.subject.otherExtracellular matrix
dc.subject.otherNanoscience
dc.subject.otherIntegrins
dc.titleForce loading explains spatial sensing of ligands by cells
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
676719.pdf
Mida:
4.35 MB
Format:
Adobe Portable Document Format