Carregant...
Miniatura

Tipus de document

Article

Versió

Versió enviada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/151628

On the summation of the singular series

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The singular series has great importance in the study of the number of representations of a rational integer as a sum oí integral squares (cf. (3)). As is known (cf. (3), [81) the sum of the singular series is jusi the average number r(n, gen Jk) of representations of a positive integer n by the genus of the identity quadralic form in k variables. Bateman [2) calculated the sum of the singular series in the cases k = 3.4, following Hardy and Hecke methocl~. His results can though more easily be obtained by using Siegel's formula for the evaluation of r(n, gen lk). In this paper we derive in sorne special cases a formula for r(n, gen lk)• from Siegel's formula. which covers those considered by Bateman. We use Gauss-Weber sums to evaluate the 2-adic densities, which, in Siegel's rnethod, causes the main difficulties. Our considerations in the case k • 24 also yield the celebrated Ramanujan's formula about the number of representations of an integer as sum of 24 squares. I wish to thank Professor P. Bayer for her encouragement in doing this paper.

Descripció

Preprint enviat per a la seva publicació en una revista científica: Manuscripta Math 57, 469–475 (1987). [https://doi.org/10.1007/BF01168672]

Citació

Citació

ARENAS, A. (àngela). On the summation of the singular series. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/151628]

Exportar metadades

JSON - METS

Compartir registre