Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió enviadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/151628
On the summation of the singular series
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
The singular series has great importance in the study of the number of representations of a rational integer as a sum oí integral squares (cf. (3)).
As is known (cf. (3), [81) the sum of the singular series is jusi the average number
r(n, gen Jk) of representations of a positive integer n by the genus of the identity quadralic
form in k variables.
Bateman [2) calculated the sum of the singular series in the cases k = 3.4, following
Hardy and Hecke methocl~. His results can though more easily be obtained by using Siegel's
formula for the evaluation of r(n, gen lk).
In this paper we derive in sorne special cases a formula for r(n, gen lk)• from Siegel's
formula. which covers those considered by Bateman. We use Gauss-Weber sums to evaluate the
2-adic densities, which, in Siegel's rnethod, causes the main difficulties.
Our considerations in the case k • 24 also yield the celebrated Ramanujan's formula
about the number of representations of an integer as sum of 24 squares.
I wish to thank Professor P. Bayer for her encouragement in doing this paper.
Descripció
Preprint enviat per a la seva publicació en una revista científica: Manuscripta Math 57, 469–475 (1987). [https://doi.org/10.1007/BF01168672]
Matèries
Matèries (anglès)
Citació
Citació
ARENAS, A. (àngela). On the summation of the singular series. [consulta: 23 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/151628]