Entropy and Exact Matrix-Product Representation of the Laughlin Wave Function

dc.contributor.authorIblisdir, Sofyan
dc.contributor.authorLatorre, José Ignacio
dc.contributor.authorOrús Lacort, Román
dc.date.accessioned2019-07-22T10:37:30Z
dc.date.available2019-07-22T10:37:30Z
dc.date.issued2007-02-06
dc.date.updated2019-07-22T10:37:30Z
dc.description.abstractAn analytical expression for the von Neumann entropy of the Laughlin wave function is obtained for any possible bipartition between the particles described by this wave function, for a filling fraction ν = 1 . Also, for a filling fraction ν = 1 / m , where m is an odd integer, an upper bound on this entropy is exhibited. These results yield a bound on the smallest possible size of the matrices for an exact representation of the Laughlin ansatz in terms of a matrix-product state. An analytical matrix-product state representation of this state is proposed in terms of representations of the Clifford algebra. For ν = 1 , this representation is shown to be asymptotically optimal in the limit of a large number of particles.
dc.format.extent4 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec592850
dc.identifier.issn0031-9007
dc.identifier.urihttps://hdl.handle.net/2445/137819
dc.language.isoeng
dc.publisherAmerican Physical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevLett.98.060402
dc.relation.ispartofPhysical Review Letters, 2007, vol. 98, num. 6, p. 060402
dc.relation.urihttps://doi.org/10.1103/PhysRevLett.98.060402
dc.rights(c) American Physical Society, 2007
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)
dc.subject.classificationFísica de partícules
dc.subject.classificationEntropia
dc.subject.otherParticle physics
dc.subject.otherEntropy
dc.titleEntropy and Exact Matrix-Product Representation of the Laughlin Wave Function
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
592850.pdf
Mida:
102.47 KB
Format:
Adobe Portable Document Format