FlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology

dc.contributor.authorBotta, Cirino
dc.contributor.authorMaia, Catarina
dc.contributor.authorGarcés, Juan José
dc.contributor.authorTermini, Rosalinda
dc.contributor.authorPérez, Cristina
dc.contributor.authorManrique, Irene
dc.contributor.authorBurgos, Leire
dc.contributor.authorZabaleta, Aintzane
dc.contributor.authorAlignani, Diego
dc.contributor.authorSarvide, Sarai
dc.contributor.authorMerino, Juana
dc.contributor.authorPuig, Noemí
dc.contributor.authorCedena, María Teresa
dc.contributor.authorRossi, Marco
dc.contributor.authorTassone, Pierfrancesco
dc.contributor.authorGentile, Massimo
dc.contributor.authorCorreale, Pierpaolo
dc.contributor.authorBorrello, Ivan
dc.contributor.authorTerpos, Evangelos
dc.contributor.authorJelinek, Tomas
dc.contributor.authorPaiva, Artur
dc.contributor.authorRoccaro, Aldo
dc.contributor.authorGoldschmidt, Hartmut
dc.contributor.authorAvet-Loiseau, Hervé
dc.contributor.authorRosiñol Dachs, Laura
dc.contributor.authorMateos, María Victoria
dc.contributor.authorMartínez López, Joaquín
dc.contributor.authorLahuerta, Juan José
dc.contributor.authorBladé, J. (Joan)
dc.contributor.authorSan Miguel, Jesús F.
dc.contributor.authorPaiva, Bruno
dc.date.accessioned2023-09-19T10:56:43Z
dc.date.available2023-09-19T10:56:43Z
dc.date.issued2022-01-24
dc.date.updated2023-06-22T10:20:52Z
dc.description.abstractLarge-scale immune monitoring is becoming routinely used in clinical trials to identify determinants of treatment responsiveness, particularly to immunotherapies. Flow cytometry remains one of the most versatile and high throughput approaches for single-cell analysis; however, manual interpretation of multidimensional data poses a challenge when attempting to capture full cellular diversity and provide reproducible results. We present FlowCT, a semi-automated workspace empowered to analyze large data sets. It includes pre-processing, normalization, multiple dimensionality reduction techniques, automated clustering, and predictive modeling tools. As a proof of concept, we used FlowCT to compare the T-cell compartment in bone marrow (BM) with peripheral blood (PB) from patients with smoldering multiple myeloma (SMM), identify minimally invasive immune biomarkers of progression from smoldering to active MM, define prognostic T-cell subsets in the BM of patients with active MM after treatment intensification, and assess the longitudinal effect of maintenance therapy in BM T cells. A total of 354 samples were analyzed and immune signatures predictive of malignant transformation were identified in 150 patients with SMM (hazard ratio [HR], 1.7; P < .001). We also determined progression-free survival (HR, 4.09; P < .0001) and overall survival (HR, 3.12; P = .047) in 100 patients with active MM. New data also emerged about stem cell memory T cells, the concordance between immune profiles in BM and PB, and the immunomodulatory effect of maintenance therapy. FlowCT is a new open-source computational approach that can be readily implemented by research laboratories to perform quality control, analyze high-dimensional data, unveil cellular diversity, and objectively identify biomarkers in large immune monitoring studies. These trials were registered at www.clinicaltrials.gov as #NCT01916252 and #NCT02406144.© 2022 by The American Society of Hematology. Licensed under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0), permitting only noncommercial, nonderivative use with attribution. All other rights reserved.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idimarina9276337
dc.identifier.issn2473-9537
dc.identifier.pmid34587246
dc.identifier.urihttps://hdl.handle.net/2445/202034
dc.language.isoeng
dc.publisherAmerican Society of Hematology
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1182/bloodadvances.2021005198
dc.relation.ispartofBlood Advances, 2022, vol. 6, num. 2, p. 690-703
dc.relation.urihttps://doi.org/10.1182/bloodadvances.2021005198
dc.rightscc by-nc-nd (c) Botta, Cirino et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
dc.subject.classificationInformàtica mèdica
dc.subject.classificationDiagnòstic immunològic
dc.subject.otherImmunodiagnosis
dc.subject.otherMedical informatics
dc.titleFlowCT for the analysis of large immunophenotypic datasets and biomarker discovery in cancer immunology
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
FlowCT for the analysis of large immunophenotypic data sets_BloodAdvances.pdf
Mida:
2.64 MB
Format:
Adobe Portable Document Format