Density-dependent formulation of dispersion−repulsion interactions in hybrid multiscale quantum/molecular mechanics (QM/MM) models

dc.contributor.authorCurutchet Barat, Carles E.
dc.contributor.authorCupellini, Lorenzo
dc.contributor.authorKongsted, Jacob
dc.contributor.authorCorni, Stefano
dc.contributor.authorFrediani, Luca
dc.contributor.authorSteindal, Arnfinn Hykkerud
dc.contributor.authorGuido, Ciro A.
dc.contributor.authorScalmani, Giovanni
dc.contributor.authorMennucci, Benedetta
dc.date.accessioned2018-06-01T14:04:17Z
dc.date.available2019-02-13T06:10:18Z
dc.date.issued2018-03-13
dc.date.updated2018-06-01T14:04:18Z
dc.description.abstractMixed multiscale quantum/molecular mechanics (QM/MM) models are widely used to explore the structure, reactivity, and electronic properties of complex chemical systems. Whereas such models typically include electrostatics and potentially polarization in so-called electrostatic and polarizable embedding approaches, respectively, nonelectrostatic dispersion and repulsion interactions are instead commonly described through classical potentials despite their quantum mechanical origin. Here we present an extension of the Tkatchenko-Scheffler semiempirical van der Waals (vdWTS) scheme aimed at describing dispersion and repulsion interactions between quantum and classical regions within a QM/MM polarizable embedding framework. Starting from the vdWTS expression, we define a dispersion and a repulsion term, both of them density-dependent and consistently based on a Lennard-Jones-like potential. We explore transferable atom type-based parametrization strategies for the MM parameters, based on either vdWTS calculations performed on isolated fragments or on a direct estimation of the parameters from atomic polarizabilities taken from a polarizable force field. We investigate the performance of the implementation by computing self-consistent interaction energies for the S22 benchmark set, designed to represent typical noncovalent interactions in biological systems, in both equilibrium and out-of-equilibrium geometries. Overall, our results suggest that the present implementation is a promising strategy to include dispersion and repulsion in multiscale QM/MM models incorporating their explicit dependence on the electronic density.
dc.format.extent28 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec679076
dc.identifier.issn1549-9618
dc.identifier.pmid29439575
dc.identifier.urihttps://hdl.handle.net/2445/122727
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.jctc.7b00912
dc.relation.ispartofJournal of Chemical Theory and Computation, 2018, vol. 14, num. 3, p. 1671-1681
dc.relation.urihttps://doi.org/10.1021/acs.jctc.7b00912
dc.rights(c) American Chemical Society , 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Farmàcia, Tecnologia Farmacèutica i Fisicoquímica)
dc.subject.classificationQuímica quàntica
dc.subject.classificationQuímica física
dc.subject.otherQuantum chemistry
dc.subject.otherPhysical and theoretical chemistry
dc.titleDensity-dependent formulation of dispersion−repulsion interactions in hybrid multiscale quantum/molecular mechanics (QM/MM) models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
679076.pdf
Mida:
8.57 MB
Format:
Adobe Portable Document Format