Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/16932

On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.)

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

Let Y be a closed subscheme of Pn−1 k defined by a homogeneous ideal I⊂ A=k[X1,...,Xn], and X obtained by blowing up Pn−1 k along Y. Denote by Ic the degree c part of I and assume that I is generated by forms of degree ≤ d. Then the rings k[(Ie)c] are coordinate rings of projective embeddings of X in PN−1 k , where N=dimk(Ie)c for c ≥ de+1. The aim of this paper is to study the Gorenstein property of the rings k[(Ie)c] . Under mild hypothesis we prove that there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is Gorenstein, and we determine them for several families of ideals.

Citació

Citació

LAVILA VIDAL, Olga, ZARZUELA, Santiago. On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.). _Collectanea Mathematica_. 1998. Vol. 49, núm. 2-3, pàgs. 383-397. [consulta: 27 de gener de 2026]. ISSN: 0010-0757. [Disponible a: https://hdl.handle.net/2445/16932]

Exportar metadades

JSON - METS

Compartir registre