On the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.)

dc.contributor.authorLavila Vidal, Olgacat
dc.contributor.authorZarzuela, Santiagocat
dc.date.accessioned2011-03-08T09:49:24Z-
dc.date.available2011-03-08T09:49:24Z-
dc.date.issued1998-
dc.description.abstractLet Y be a closed subscheme of Pn−1 k defined by a homogeneous ideal I⊂ A=k[X1,...,Xn], and X obtained by blowing up Pn−1 k along Y. Denote by Ic the degree c part of I and assume that I is generated by forms of degree ≤ d. Then the rings k[(Ie)c] are coordinate rings of projective embeddings of X in PN−1 k , where N=dimk(Ie)c for c ≥ de+1. The aim of this paper is to study the Gorenstein property of the rings k[(Ie)c] . Under mild hypothesis we prove that there exist at most a finite number of diagonals (c, e) such that k[(Ie)c] is Gorenstein, and we determine them for several families of ideals.
dc.format.extent15 p.-
dc.format.mimetypeapplication/pdf-
dc.identifier.idgrec186602-
dc.identifier.issn0010-0757-
dc.identifier.urihttps://hdl.handle.net/2445/16932-
dc.language.isoengeng
dc.publisherUniversitat de Barcelonacat
dc.relation.isformatofReproducció del document publicat a: http://www.collectanea.ub.edu/index.php/Collectanea/article/view/3948/4787cat
dc.relation.ispartofCollectanea Mathematica, 1998, vol. 49, num. 2-3, p. 383-397cat
dc.rights(c) Universitat de Barcelona, 1998-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnells commutatiuscat
dc.subject.classificationGeometria algebraicacat
dc.subject.classificationCategories (Matemàtica)cat
dc.subject.otherCommutative ringseng
dc.subject.otherAlgebraic geometryeng
dc.subject.otherCategories (Mathematics)eng
dc.titleOn the Gorenstein property of the diagonals of the Rees algebra. (Dedicated to the memory of Fernando Serrano.)eng
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
186602.pdf
Mida:
167.5 KB
Format:
Adobe Portable Document Format