Mètodes numèrics per a equacions diferencials ordinàries

dc.contributor.advisorJorba i Monte, Àngel
dc.contributor.authorCastell Fàbregues, Jaume
dc.date.accessioned2017-03-20T12:14:00Z
dc.date.available2017-03-20T12:14:00Z
dc.date.issued2016-06-27
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2016, Director: Àngel Jorba i Monteca
dc.description.abstractMainly, the project studies some methods for numerical integration to approximate the solutions of ordinary differential equations, from now on they will be called ODE’s. Firstly, some concepts based on numerical methods for initial value problems studied during the degree subject Mètodes Numèrics 2 are reviewed and extended. We studied the Taylor methods, using automatic differentiation to compute the set of derivatives of a function, the Runge-Kutta methods and, as a variant of these, the Runge-Kutta-Fehlberg methods that lets us to control the step size. The next section of the project consists in the study of the stability of periodic orbits (Floquet’s theorem) and orbit’s continuation regarding to parameters. Finally, the last part studies a couple examples of classical mechanics where the tools learned on the first part of the project are used: pendulum periodically disturbed and Bicircular model. In both cases we explain the process to compute the periodic orbits and it’s stability. In this process, we use some concepts studied in Equacions Diferencials subject: variational equations and Poincaré map.ca
dc.format.extent80 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/108627
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Jaume Castell Fàbregues, 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques
dc.subject.classificationEquacions diferencials ordinàries
dc.subject.classificationTreballs de fi de grau
dc.subject.classificationAnàlisi numèricaca
dc.subject.classificationProblemes de valor inicialca
dc.subject.classificationÒrbitesca
dc.subject.classificationMecànicaca
dc.subject.otherOrdinary differential equations
dc.subject.otherBachelor's theses
dc.subject.otherNumerical analysiseng
dc.subject.otherInitial value problemseng
dc.subject.otherOrbitseng
dc.subject.otherMechanicseng
dc.titleMètodes numèrics per a equacions diferencials ordinàriesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
402.42 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria