Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217650
On the basin of attraction of a critical three-cycle of a model for the secant map
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We consider the secant method $S_p$ applied to a real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point $(\alpha,\alpha)$. We propose a simple model map $T_{a,d}$ having a unique fixed point at the origin which encodes the dynamical behaviour of $S_p^3$ at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of $T_{a,d}$ as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of $d$ (even or odd) and $a\in \mathbb R$ (positive or negative).
Matèries (anglès)
Citació
Citació
FONTICH, Ernest, GARIJO REAL, Antonio, JARQUE I RIBERA, Xavier. On the basin of attraction of a critical three-cycle of a model for the secant map. _Discrete and Continuous Dynamical Systems-Series A_. 2024. Vol. 45, núm. 4, pàgs. 1045-1078. [consulta: 21 de gener de 2026]. ISSN: 1078-0947. [Disponible a: https://hdl.handle.net/2445/217650]