On the basin of attraction of a critical three-cycle of a model for the secant map

dc.contributor.authorFontich, Ernest, 1955-
dc.contributor.authorGarijo Real, Antonio
dc.contributor.authorJarque i Ribera, Xavier
dc.date.accessioned2025-01-20T07:37:32Z
dc.date.available2025-09-23T05:10:16Z
dc.date.issued2024-09-24
dc.date.updated2025-01-20T07:37:33Z
dc.description.abstractWe consider the secant method $S_p$ applied to a  real polynomial $p$ of degree $d+1$ as a discrete dynamical system on $\mathbb R^2$. If the polynomial $p$ has a local extremum at a point $\alpha$ then the discrete dynamical system generated by the iterates of the secant map exhibits a critical periodic orbit of period 3 or three-cycle at the point $(\alpha,\alpha)$. We propose a simple model map $T_{a,d}$ having a unique fixed point at the origin which encodes the dynamical behaviour of $S_p^3$ at the critical three-cycle. The main goal of the paper is to describe the geometry and topology of the basin of attraction of the origin of $T_{a,d}$ as well as its boundary. Our results concern global, rather than local, dynamical behaviour. They include that the boundary of the basin of attraction is the stable manifold of a fixed point or contains the stable manifold of a two-cycle, depending on the values of the parameters of $d$ (even or odd) and $a\in \mathbb R$ (positive or negative).
dc.format.extent34 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec752306
dc.identifier.issn1078-0947
dc.identifier.urihttps://hdl.handle.net/2445/217650
dc.language.isoeng
dc.publisherAmerican Institute of Mathematical Sciences (AIMS)
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.3934/dcds.2024122
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series A, 2024, vol. 45, num.4, p. 1045-1078
dc.relation.urihttps://doi.org/10.3934/dcds.2024122
dc.rights(c) American Institute of Mathematical Sciences (AIMS), 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationSistemes dinàmics diferenciables
dc.subject.classificationVarietats (Matemàtica)
dc.subject.otherDifferentiable dynamical systems
dc.subject.otherManifolds (Mathematics)
dc.titleOn the basin of attraction of a critical three-cycle of a model for the secant map
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
872356.pdf
Mida:
651.12 KB
Format:
Adobe Portable Document Format